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Introduction
ICF3D is a three-dimensional radiation hydro d y-

namics simulation computer code being developed
for ICF applications. It has a number of distinguish-
ing feature s :
• Portable; works on uniprocessors and massively

parallel processors (MPP).
• Written in the object-oriented programming (OOP)

language C++.
• Based on unstructured grids.
• Discretized using finite elements; the hydrodynam-

ics is modeled using discontinuous functions.
We believe these features are important for a variety

of reasons. 
These design codes must be portable, if they are to

run on future computers. Computers are evolving at
such a rapid pace that today’s supercomputer will be
obsolete in two to three years. However, software
development is a painfully slow and labor- i n t e n s i v e
t a s k .1 Thus, it is important that codes developed now can
run eff i c i e n t l y on tomorrow’s computers. Today’s
supercomputer is a parallel machine, a collection of
individual “boxes” each with its own memory and
with one or more processing elements (PEs). ICF3D is
written to take advantage of this architecture. It paral-
lelizes by decomposing physical space into nearly dis-
joint subdomains and relies on explicit calls to system
message-passing routines. This approach allows us to
scale the computation. If more boxes are available, big-
ger problems can be run.

In order to have reusable code, software should be
robust and modular. This is facilitated by an OOP
approach. In a modular code, if something needs to be
rewritten or modified, one can retain the trusted com-
ponents. Functions or modules often need to protect
their internal variables from inadvertent corruption by
other routines; such protection leads to “data hiding.”
For better organization, one may wish to use “classes,”

or to define new entities, each with their individual
methods, e.g., a cell and a means of calculating its vol-
ume. These requirements are easily accommodated by
OOP languages such as C++. Traditionally, scientific
software has used FORTRAN. ICF3D is embracing
C++. This approach is not without risks. Although
OOP in general, and C++ in particular, is now widely
used, it rarely appears in computational physics. In the
past, C++ compilers were notoriously slow in opti-
mizing code, and for scientists, speed is nearly as
important as accuracy. This state of affairs is chang-
ing, and the pessimistic results previously re p o r t e d
by Haney2 a re no longer tru e .3

Codes based on unstru c t u red grids can easily model
real experiments with complicated geometries. For exam-
ple, in an indirectly driven ICF experiment, a spherical
capsule is embedded in a nearly vacuous cylindrical
hohlraum with partially opened ends. Some experiments
may have additional shields inside the hohlraum to pro-
tect the capsule. During the experiment, the walls and
capsule undergo significant displacement. In modeling, a
traditional, fully stru c t u red mesh will have difficulty 
simulating and resolving the initial configuration and its
subsequent motion. An unstru c t u red grid is useful as it
allows diff e rent cell types to be connected. The extra
o v e rhead in allowing complicated cells is offset by 
the flexibility aff o rded when the original domain is 
d i s c retized and/or the problem re g r i d d e d .

Simulation codes of this type benefit by being dis-
c retized using finite elements. Unstru c t u red grids and
complicated geometries naturally lead to finite element
(FE) methods. ICF3D’s grid consists of a collection of hex-
ahedra, prisms, pyramids, and/or tetrahedra. Pro c e s s e s
such as diffusion are modeled by nodal FE methods in
which the variables are given a continuous re p re s e n t a t i o n
t h roughout the domain. The hydrodynamics is simulated
by a novel scheme4 based on the discontinuous FE
method. This allows a natural re p resentation of inher-
ently discontinuous phenomena, such as shocks.
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In this article, the first section provides an overview
of ICF3D’s modules, discusses how the physics packages
are coupled, and describes the individual packages in
more detail. The next section presents some results. In
the conclusion, we describe our future plans.

We have a couple of clarifications to make about our
word usage. In internal discussions, the name “ICF3D”
sometimes denotes both the “stand-alone” physics
code as well as the environment used to initialize prob-
lems, execute them, control the execution, and analyze
the results. To avoid confusion, in this article ICF3D
refers only to the stand-alone code. In addition,
throughout the article, we use “module” and “pack-
age” interchangeably to denote a set of routines that
perform a specific task.

ICF3D Modules
ICF3D runs on a variety of machines. Its I/O is in a

special format, which is described in this article in
“ICF3D Initialization”(see p. 168). Once the input files
are prepared, ICF3D may be run like any other C++
program. ICF3D also has an interactive controlling
environment. The interpretive language Python5 con-
trols the execution.

In the following subsections, we discuss the ICF3D
modules. The modules consist of one or more C++
functions. When properly designed, modules should
be easy to check, and if the need arises, easy to replace
with better modules. The modules’ execution is con-
trolled by user-set parameters. Most modules can be
run separately. This code has separate modules for
Initialization, Hydrodynamics, Heat Conduction,
Radiation Diffusion, Equation of State (EOS), and
Parallel Processing.

One important issue is how to couple the physics
packages. The problem is complicated since the pack-
ages may have diff e rent re p resentations of the vari-
ables, e.g., cell or node centered. This diff e rence is
exemplified by the hydro and radiation diff u s i o n
packages. The former evolves equations for the den-
sity ρ, the momentum density ρv, and the total
e n e rgy density ρE. The radiation diffusion package
couples the temperature T to the spectral radiation
e n e rgy density uν w h e re ν is the photon fre q u e n c y.
The coupling difficulty arises because hydro vari-
ables have a discontinuous FE re p re s e n t a t i o n ,
w h e reas any quantity undergoing diffusion (a sec-
o n d - o rder diff e rential operator) must have a continu-
ous re p resentation, if the diffusion is modeled by FE.
A straightforward coupling of a nodal uν to a zonal
T may create anomalous diff u s i o n .6 Hence, the
radiation-to-matter coupling should be done with
functions having similar (nodal and continuous) 
re p re s e n t a t i o n s .

The equations of interest are the conservation laws for
mass, momentum, and total matter energ y, re s p e c t i v e l y :

(1)

(2)

and

(3)

Equation (3) is coupled to the transport (diffusion)
equation of the radiation field

(4)

In Eqs. (1) to (3), Fi denotes the flux of i, i.e., Fρvx =
ρvxv + p, and FρE = (ρE + p)v, where vx is the x v e l o c i t y
component and p is the pressure. In Eqs. (2) to (4), ρg is
an external force density, ε is the internal energy, Hε is
the heat conduction term, Sε is a source of energy (e.g.,
due to laser deposition), Kνε describes the radiation-to-
matter coupling, d/dt is the Lagrangian derivative, and
Dν is the diffusion coefficient of the radiation field. In
the future, when ε is split into separate electron and
ion components, Kν ε will denote the radiation-to-electro n
coupling, and Sε, if due to a laser, will be an electro n
s o u rc e .

Equation (3) is solved by operator splitting. At the
start of the time cycle, we compute all the coefficients
we need, such as conductivity. Then, we do a hydro
step; Eqs. (1) to (3) are advanced together except that
in Eq. (3) the H, S, and K terms are ignored.

The hydro module allows for the passive advec-
tion of an arbitrary number of other variables.
P re s e n t l y, this feature is only used for the “mass
fractions.” In the future, Eq. (4) would also be solved
by operator splitting. The convective part would be
done by the hydro, while the transport and radia-
tion-to-matter coupling would be done at the end of
the cycle.

The hydro module produces an intermediate total
energy E(1). We now introduce the subscript d to
denote variables whose numerical representation is
discontinuous. If the grid consists of only regular hexa-
hedra, there are eight cells adjacent to each node.
Hence, fd denotes a function with eight values per
node. At the conclusion of the hydro step, we compute
an intermediate internal energy

(5)

This step is potentially dangerous since Eq. (5) implic-
itly assumes that is a valid representation for
the kinetic energy ek. Unfortunately, ek is not computed
directly but is only derived by squaring the velocity.
The difficulty is illustrated by considering an ideal gas
for which we require ε ≥ 0. Since the code evolves ρ,
ρv, and ρE, there are no explicit assurances that 
E ≥ .

υ d
2 /2

    εd
1( ) = Ed

1( ) − υd
2 /2 .

    
duν /dt = ∇ ⋅ Dν∇uν( ) − K νε .

      
∂ t ρE( ) + ∇⋅ FρE = ρg ⋅ v + H ε + Sε + ∫ K νεdν .

      
∂ t ρv( ) + ∇ ⋅Fρv = ρg ,

      
∂ tρ +∇ ⋅Fρ = 0 ,
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Once T( 1 ) is known, we use operator splitting and
FE to first do the heat conduction and the energ y
d e p o s i t i o n

(12)

In Eq. (12), the heat transport is implicit in ∆T( 2 ), but
the conductivity is computed using values at the
start of the cycle. The source S is explicit. If it is due
to a laser, and its deposition depends on both ρ a n d
T, we use the latest values, the ones obtained after
the hydro step. For laser deposition, we need contin-
uous re p resentations of ρ and T in order to compute
their gradients. A continuous (nodal) density is
given by its nodal values

(13)

where the integral in the numerator is lumped, as in
Eq. (11). Using the nodal values, ρ is easily obtained
from the analytic, continuous representation

(14)

The gradient is continuous within cells and discontinu-
ous across cell faces.

Equation (12) is followed by the radiation-to-matter
coupling. Equation (4) is coupled to

(15)

where K is implicit in the final, continuous tempera-
ture. Equations (4) and (15) are solved by standard FE
techniques; everything except the transport term in Eq.
(4) is lumped. The result is a continuous representation
for both the final radiation energy density uν and mat-
ter temperature T(3).

To summarize, T is a derived quantity and ε i s
fundamental. During the heat conduction and 
radiation-to-matter coupling, we keep track of the
e n e rgy changes in each cell. If the changes are small,
then the ε after the hydro is not modified much.
Hence, any sharp features are not smeared out. In
p a r t i c u l a r, if there are no matter energy sourc e s ,
very small heat-transport coefficients, and insignifi-
cant radiation-to-matter coupling, then the hydro
should work as if it is the only package ru n n i n g .
S i m i l a r l y, if we have only hydro and a zonal matter
e n e rgy source running, and the source is distributed
a c c o rding to Eq. (11), then the results should still
stay sharp.

    
ρcv T 3( ) − T 2( )( ) = ∫ Kνε

3( )
dν ,

    

ρ x, y , z( ) = ∑
j

φ j x, y , z( )  ρ j .

∇

    

ρj =
 dV

Ω∫  φ j  ρd

 dV  
Ω∫ φ j

     ,

    
ρcv T 2( ) − T 1( )( ) = ∇ ⋅ κ0( )∇T 2( ) + S ρ, T 1( )( ) .
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The variables ρd and , and the EOS yield the
pressure and the temperature . The other
physics packages compute changes to the internal
energy ∆εd. The cycle concludes by computing the final
energies

(6)

The change ∆ εd consists of the H, S, and K terms that
w e re ignored by the hydro step. At the end of the
time cycle, we have both a continuous nodal T and a
discontinuous εd. The two variables may not be 
consistent. If necessary, we use the EOS to get a self-
consistent pre s s u re pd and a temperature Td f rom ρd
and εd. Since Td has a discontinuous FE re p re s e n t a-
tion, it may not agree with the continuous FE
(nodal) value obtained by coupling to the radiation.
To be more precise, after multiplying through by the
time step, we write

(7)

The energy difference is expressed as a temperature
difference

(8)

where

(9)

is the specific heat computed at the start of the time
cycle.

We now specify how the variables of Eqs. (7) to (9)
are defined. The continuous FE representation of the
temperature at the end of the hydro at the jth grid
point is

(10)

where Ω denotes the entire domain and φj is the FE
basis function centered at the jth grid point. The inte-
grals in Eq. (10) are sums over all the cells that support
φj. Furthermore, the integrals are lumped, i.e., for any 

f u n c t i o n f (11)

where cellj is a cell with xj as one of its vertices and fd,j
is the discontinuous value in c e l lj at x = xj. In the FE
d i s c retization of the heat conduction and radiation-to-
matter coupling equations, we lump all but the transport
term. Each equation is discretized by multiplying by 
∆t φj and integrating over Ω.

    

dV φ j  fΩ∫ = dV φ jΩ∩cellj∫ 
 
  

 
  

cell
∑ fd , j ,

    

Tj
1( ) =

 dV  
Ω∫ φ j  ρd  cv ,d  Td

(1)

 dV  
Ω∫ φ j  ρd  cv ,d

   ,

    
cv =

∂ε
∂T ρ 0( ) ,T 0( )

    
∆ε = cv T − T 1( )( ) ,

    
ρ∆ε = H ε + Sε + ∫ K νεdν .

    εd = εd
1( ) + ∆εd   and  Ed = Ed

1( ) + ∆εd .

εd
1( )

pd
1( )

Td
1( )



ICF3D Initialization
The grid consists of three types of objects: cells,

faces, and nodes. A node is characterized by its
sequence number and its coordinates. Cells and faces
use the object-oriented concept of inheritance. Faces
may be quadrilateral or triangular, whereas four types
of cells are allowed: tetrahedra, pyramids, prisms,
and/or hexahedra. The cell, face, and node objects are
related. For example, a hexahedron has 6 faces and 8
nodes. Each interior face has two cells on either side.
The cells need not be regular; the quadrilateral faces
need not be coplanar. However, the cells cannot be so
distorted to preclude an isoparametric mapping to re g u-
lar elements, e.g., quadrilaterals to a unit cube. For
Lagrangian node motion, this implies that if the grid
becomes sufficiently distorted, the problem must be
regridded. We do not yet have a means of regridding. 

We have not yet written a general, unstructured
mesh generator. In order to run test problems, we have
instead written a simple, separate mesh generator that
outputs mesh description files for subsequent reading
by ICF3D. However, we stress that ICF3D is written to
run on completely unstructured meshes. Our genera-
tor is described in “Problem Generation” (see p. 172); it
writes ICF3D input files that describe the mesh in the
Advanced Visual Systems (AVS) Unstructured Cell
Data (UCD) format. (AVS is a commercial software
visualization product.) This format, which consists of
two lists, is a terse description of the grid. The first is a
node list; each node is described by its unique
sequence number (an integer) and by the values of its
coordinates (three real numbers). The second is a cell
list; each cell is described by its type—e.g., a pyra-
mid—and by a list of integer sequence numbers that
comprise the cell’s vertices. The cell’s vertices must be
given in a prescribed way, e.g., a pyramid’s apex is
listed first.

We have used the UCD because it is commercially
available, but it is not adequate for use in generating
an unstructured mesh. For example, the format does
not explicitly list which cells share given a node. Also
the format never mentions faces. To define the mesh,
ICF3D requires that the different objects (cells, faces,
and nodes) have a set of interconnecting pointers to
describe which cells lie on either side of a face, which
nodes make up the face, etc.

The discontinuous hydrodynamic scheme imposes
even more requirements on the mesh description. The
dependent variables are cell–node based. For example,
each cell’s density is described by its value on the ver-
tices. Since the hydrodynamic variables are allowed to
be discontinuous, a neighboring cell has different
nodal values. Thus, such variables are considered
“doubly indexed”: once over cells, then again over the
cell’s nodes. When the hydrodynamic face fluxes are
computed, the routine loops over each face, follows the

pointer to each of the adjoining cells, and goes to the
appropriate node to pick up the value. This requires
the mesh to provide an additional set of pointers:
face→cell→node.

Some physics packages are more efficient if addi-
tional connectivity information is supplied. For the
hydrodynamics, the limiting routine, which deletes
unphysical extrema, re q u i res that each cell point to
all other cells that share its nodes. The continuous,
p i e c e w i s e - l i n e a r, nodal FE scheme that discretizes the 
second-order elliptic operator imposes a similar
requirement. Each node, which by construction is a
vertex of one or more cells, needs a list of the other
vertices. On a regular hexahedral grid, the nodal
neighbor list gives rise to a 27-point stencil.

All this information is computed at the start of the
run and saved. Presently, since we do not have a
regridding routine, the topological description of the
grid does not change during the course of a run—even
in a Lagrangian calculation.

EOS Package

In the discontinuous finite element method, density,
pressure, and velocity are linear functions. These vari-
ables are used to calculate the hydrodynamic fluxes.
The Roe solver (which computes the fluxes) needs var-
ious derivatives of thermodynamic quantities. This
requires that the EOS module compute some variables
as functions of different combinations of other quanti-
ties. In particular, we need

Such functions are part of our C++ EOS class.
Compartmentalizing these functions into a class allows
for better management of data common to all functions
for a specific material. For example, in the case of tabu-
lated equations of state, the functions are calculated
from the same database. The ICF3D EOS class uses the
C++ concepts of inheritance and virtual function over-
loading to allow new equations of state to be easily
implemented.

C u r re n t l y, three diff e rent types of equations of
state are supported by the EOS class: ideal gases,
ASCII versions of EOS tables for various materials,
and a version of the SESAME equation-of-state tables
from the Los Alamos National Laboratory.7 Tabular
data are fitted by bicubic splines. The EOS class “con-
structor,” called after the problem initializes, computes
spline coefficients. The coefficients are saved and used
to evaluate the functions. This makes for faster calls, at
the cost of storing a larger amount of data. We intend
to add a class that uses the TABLib library.8 This will

    
ε ρ, p( ),  p ρ, ε( ) ,  

∂ε ρ, p( )
∂p

,  
∂ε ρ, p( )

∂ρ
,   and 

∂ε ρ, T( )
∂T

.
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allow ICF3D to use tabular equations of state stored as
PDB files.

If a cell has more than one material, ICF3D 
calculates and advects mass fractions. In this case,
the cell’s thermodynamic quantities are specified by
a total ρ, total energy density (or total p, or total T) ,
and a set of mass fractions for the diff e rent 
m a t e r i a l s .

Hydrodynamics

The ICF3D hydrodynamic scheme is described in
Ref. 4. The algorithm advances two scalar hyperbolic
equations for the density ρ and the total energy den-
sity ρE, and the vector equation for the momentum
density ρv. The scheme is compact and is easily par-
allelized since it gets all of its accuracy locally; it
does not reach out to more than one neighboring cell
to approximate the dependent variables.

The two essential features of the hydro scheme are
its ability to do fully Arbitrary Lagrangian Eulerian
(ALE) calculations and its ability to run in different
coordinate systems. ALE combines the best features of
Eulerian and Lagrangian codes. The “arbitrary” aspect
allows the user to specify the mesh’s motion to resolve
a feature that would not be possible to resolve with
either a purely Eulerian or a purely Lagrangian code.
The hydro module is implemented in 3-D Cartesian,
cylindrical, and spherical geometries. We are continu-
ing to develop the ALE features to ensure code robust-
ness. In particular, we have focused attention on two
areas. The first involves the Lagrangian limit of the
ALE code where the mesh follows the fluid motion.
This is a nontrivial problem since discontinuous func-
tions represent the velocity fields, whereas the mesh is
required to be continuous. We have developed a
scheme to move the grid points that ensures a vanish-
ing average mass flux across a face.

Secondly, the shock stabilization algorithm has been
adapted to combine the pure Runge-Kutta solution,
the 3-D generalized Van Leer stabilized solution (the
limiting procedure), and the first-order Godunov limit
solution. This “adaptive” combination assures the
greatest possible accuracy as we go from very smooth
regions to extremely strong shocks. However, in 2- and
3-D problems, this stabilization is insufficient to stabi-
lize extremely strong shocks. We have implemented a
Lapidus-type artificial viscosity9 to stabilize the
remaining “transverse” oscillations near such shocks.

We have successfully run the code on two test
p roblems of particular interest to ICF: the 3-D
R a y l e i g h – Taylor (RT) instability growth pro b l e m
and the 2-D Richtmyer–Meshkov (RM) shocked
perturbation problem. The ressults are described in
the “Hydrodynamic Problems” section of this article
(see p. 175).

Heat Conduction
C u r re n t l y, ICF3D uses only a single matter tem-

p e r a t u re T. The change of the internal energy ε d u e
to temperature is expressed as

(16)

where Sε is an external source term, κ is the conductiv-
ity, and cv = ∂ε/∂T is the specific heat. In the future,
sources such as laser energy deposition will be incor-
porated into Sε .10

Equation (16) is discretized by a standard nodal FE
scheme in which T is given a continuous “piecewise
linear” representation. The dependent variable is the
nodal temperature value. For testing purposes, we pro-
vide three conductivity models: κ = constant, a power
law, and one given by the Spitzer–Härm formula.11

The heat conduction package gathers the various
coefficients (cv, κ, etc.) of Eq. (16) and calls the mathe-
matical diffusion solver package described in “FE
Diffusion Package” (see p. 170).

Radiation Transport

Radiation transport is modeled with the diffusion
approximation. The coupling to matter is governed by
the opacity κν. The relevant equations are

(17)

and

(18)

where Bν(T) is the Planck function. In the above equa-
tions the unknowns are the radiation energy densities
uν and the matter temperature T.

The same FE scheme used for heat conduction dis-
cretizes Eq. (17). In addition, uν is discretized with
respect to frequency: for each range, or frequency
“group,” uν is its average radiation energy density.

To solve the two equations, we use the “fully
implicit” scheme described in Ref. 12. First, the source
term is linearized about the temperature at the start of
the time cycle

(19)

The discretization leads to a large system of linear
equations, which is solved by a matrix-splitting itera-
tion. We write the system as Ax = S, where x = (uν, T)
denotes the vector of unknown energy densities and
temperature. As described below, we split A in two

    
Bν T( ) = Bν To

+dBν /dT To
T − To( ) .

    
ρcν∂tT = – ∫ dvcρκν Bν T( ) − uν[ ] ,

  
∂ tuν = ∇ ⋅Dν∇uν + cρκν Bν T( ) − uν[ ]

    ρcν∂tT = ∇ ⋅ κ ∇T + Sε ,
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ways: first, as A = Ad + Ac, then, as A = Al + Anl. For
the first splitting, we solve

For the second, we solve

The two splittings constitute one iteration. The itera-
tions are repeated until uν and T converge.

In the first splitting, Ad is the part of the matrix that
arises from the diffusion operator in Eq. (17). Ac is the
remaining part of A and includes the radiation–matter
coupling. The first splitting is equivalent to solving for
uν while keeping T fixed. Since the groups are only
coupled through T, the individual group densities may
be solved independently of each other. This results in
repeated calls to the diffusion solver.

In the second splitting, Al is the “local” part of the
matrix, formed from A by ignoring all spatial coupling.
Al is a block diagonal matrix, with each block corre-
sponding to a single mesh point. The blocks are of
order Nν + 1. By ordering uν first, it follows that each
block consists of an order Nν diagonal matrix in the
upper left corner and completely filled last row and
column. Hence, the blocks are quickly solved with
Gaussian elimination.

We plan to experiment with other linear solution
methods and to choose the ones that offer the best
combinations of speed and accuracy. One such method
is the “partial temperature” scheme.6 This method has
the advantage of not requiring any iterations. For the
price of advancing a single diffusion equation once,
one gets uν and T implicitly coupled.

We also plan to add the advection of uν. The above
method is physically correct only when the code runs
in the Lagrangian mode. For Eulerian or other modes
in which the mesh does not move with the fluid, we
need to consider that the radiation is also carried by
the fluid.

Lastly, we need to incorporate a routine to calculate
realistic opacities κν. Presently, ICF3D has only three
types of opacities: a user-specified constant, a simple
formula κν = (T/ν3)(1 – αe–ν/T), and tabulated “cold”
opacities.

FE Diffusion Package
The heat conduction and radiation diffusion mod-

ules both call the diffusion package, a routine that
solves the generic equation

(20)

The diffusion package transforms Eq. (20) into a linear
system and calls the solver. Equation (20) is discretized

    g∂t f = ∇⋅ D∇f + S − αf .

      A1x2 = S − Anlx1 .

      Adx1 = S − Acx0 .

by FE methods. The unknown function f is represented
in terms of basis functions

where φj is the usual piecewise linear function φj
(xi) = δij. The main difference between the diffusion
basis functions and those used for the hydrodynamic
module is that for diffusion, support (φj) extends over
all cells with xj as a vertex.

The time derivative in Eq. (20) is discretized 
using fully implicit diff e rencing. With one exception,
all coefficients are assumed to be known and con-
stant within a cell. The exception is the radiative
s o u rce, Eq. (19), in which T and T0 have nodal 
re p re s e n t a t i o n s .

After discretizing the temporal derivative, Eq. (20) is
multiplied by φi ∆t and integrated over the entire
domain. This leads to a sparse linear system for the
coefficients fj,

(21)

Integration by parts turns the transport term into a
surface integral and a volume integral of the type

(22)

If xi is not a boundary node, or if one prescribes a bound-
ary symmetry condition for the flux (–D∂f/ ∂n = 0), then
the surface integral does not appear. All terms except
the transport term are lumped. This implies that only
the flux contributes to the off-diagonal coefficients of
the matrix. Because of the symmetry in Eq. (22), the
matrix is symmetric. It is easy to show that the matrix
is also positive definite.

Unfortunately, we may not get an M matrix since
some off-diagonal coefficients may be positive. The 
M-matrix property—only non-negative coefficients for
the matrix inverse—is desirable since the diffusion
module advances positive quantities such as T. The
right-hand side of Eq. (21) is itself positive since it is a
sum of the source and the old energy. To show the loss
of the M-matrix property, recall that the transport term
is discretized by Eq. (22). The diagonal contribution
with i = j is clearly positive. For the off-diagonal terms,
consider the contribution to Eq. (22) from just one ele-
ment, K. By construction, D is constant and positive
over the element. Hence, let D = 1. In 2-D triangles, it is
easy to show that ∇φi ⋅ ∇φj ≤ 0, if none of the interior
angles are obtuse. In 2-D quadrilaterals, the result is
more restrictive, since the sign depends on the aspect
ratio of the sides. The issue is exacerbated in 3-D.
Consider the hexagon

    
K = x, y , z( ) : x ≤ 1 ,  y ≤ Y,  z ≤ Z{ }

    
dV  D  ∇φ i ⋅ ∇ φj     .Ω∫

    g + α −∇⋅ D∇( ) f = g  f0 + S .

    
f = ∑φ j x( )fj ,
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and the functions

A direct integration yields

(23)

Again, the sign depends on the aspect ratio. If Y = Z
and Y < 1, we get the undesired positive sign.

It remains to be seen whether the lack of the 
M -matrix property proves harmful. It does make the
system harder to solve (see the section below,
“Solution of Linear Systems.”) We are aware that for
the case: S = α = 0 and g = 1, the linear system of 
Eq. (21) has the form

(24)

w h e re M is the lumped (diagonal) mass matrix and S,
the stress matrix, is the discretization of the diff u s i o n
o p e r a t o r. For negligibly small ∆t, (M + ∆t S)– 1 ≈ M – ∆t S.
Hence, if S has positive off-diagonal terms, then for a
properly chosen and still positive f0, we may obtain an
f with some components negative. 

Once the diffusion module has initialized the linear
system, it calls the linear solver.

Solution of Linear Systems

ICF3D generates two types of linear systems. One
kind arises when the hydrodynamic module inverts
mass matrices to compute the fundamental variables.
The order of those systems equals the number of
degrees of freedom in a cell, e.g., eight in a hexahe-
dron. To solve these systems, we have written a set of
general routines that perform Gaussian elimination
with partial pivoting.13

The second type of systems is created by the diffu-
sion module. For such problems, the matrix A is large,
sparse, symmetric, and positive definite (SPD).
Because of the unstructured grid, the matrix sparsity
pattern is random. SPD systems are best solved by the
preconditioned conjugate gradient (PCG) method.
Three preconditioners are available: Incomplete
Cholesky (IC), one-step Jacobi (diagonal scaling), and
multistep Jacobi. In this section, we only discuss the
u n i p rocessor version of the solver. “Parallel Solution
of Linear Systems” (see p. 175) describes the MPP
m o d i f i c a t i o n s .

The PCG algorithm is well documented in the litera-
ture.13 We shall not rederive it here, but instead
describe our implementation. Unless the grid topology
is changed, the sparsity pattern remains the same.
Hence, if the discretization couples node xi to node xj,
then the ith row of the matrix has a nonzero entry in

    M + ∆tS( )f = Mf0 ,

    
dV ∇φ+ ⋅ ∇ φ− = Y 2 + Z2 − 2Y2Z2( )/9YZ .

κ∫

    φ± = 1± x( ) Y + y( ) Z + z( )/8YZ .

the jth column. Since the matrix is symmetric, row j has
the same entry in the ith column. Thus, the following
data structure suffices to describe the sparsity pattern.
For each row i, we define an integer array Ci of dimen-
sion Ci, dim where the integer Ci, dim is the number of
nonzero entries in row i to the left of the diagonal. For
some rows, for example the first, Ci, dim = 0. The array
Ci contains the column numbers of the nonzero
matrix entries. For example, if the seventh unknown
is only coupled to the third and fifth, C7, d i m = 2 and
C7 = (3, 5).

This description is computed only once, at the start
of the run. The pattern is computed from the nodal
neighbor construct described in “ICF3D Initialization”
(see p. 168). Of course, if the problem were to be
regridded (and the mesh topology changed), the spar-
sity pattern would be recomputed. Although the above
discussion focuses on a sparsity pattern due to an FE
discretization of a nodal quantity, the procedure can be
generalized. For example, if we need to discretize a
zonal quantity, we first determine the zone’s neighbors
for this application and then follow the same proce-
dure. The linear solver need not distinguish how the
linear system was derived. All we supply is a descrip-
tion of the system, i.e., the matrix order and sparsity
pattern, the matrix elements, the maximum number of
iterations allowed, the preconditioner desired, etc.

To use the IC preconditioner, we do more prelimi-
nary work. For uniprocessors, the IC variant factors
the matrix into the product

where D is diagonal, L is lower triangular with unit
diagonal and a sparsity pattern that matches that of A,
i.e., no fill-in. It can be shown14 that computing an
entry in the lower triangle of L, e.g., row i and column
j, involves a dot product of the previously computed
entries of row i and row j. For eff i c i e n c y, we do not
compute products of a nonzero entry in one row by
a zero entry in another. Avoiding such unnecessary
multiplications requires extra preliminary work and
additional storage in order to describe which entries
contribute to the product. As a result, the evaluation of
L proceeds faster, but with the penalty of indirect
addressing of the necessary elements.

We have only tested our solver on small pro b l e m s .
First of all, we have confirmed that for sparsity patterns
in which all nonzero matrix entries are bunched about
the diagonal, IC returns the exact decomposition and
PCG converges in one step. Secondly, we obtain the
results in Table 1 for Laplace’s equation on the unit
cube with Dirichlet boundary conditions. Using a uni-
form grid with L = 1/(n + 1) and n = 15, we obtain a
system of order n3.

Note that even though two-step Jacobi took nearly
50% more iterations than IC, the time spent was almost

    A = LDLT ,
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Problem Generation
The task of generating truly unstructured meshes,

even those limited to hexagonal, prismatic, pyramidal,
and/or tetrahedral cells, is a formidable job and is, in
itself, the subject of ongoing research of other groups
and companies. For our test problems, we improvised
by writing a separate code, the generator, that creates
only logically hexagonal grids.

To each point, the generator assigns an integer
three-tuple (k, l, m), where the indices are positive and
bounded by (kmax, lmax, mmax). The generator also
specifies the initial and (currently, time independent)
boundary conditions, the material(s) of choice via EOS
tables, and discretizes the frequency spectrum. To facil-
itate the generation, we have enveloped this process
under a controller or script language parser. The sys-
tem was originally developed under Basis,17 but we
have adopted Python,5 a new, portable language that
is easily extended. Using a technique similar to that for
LASNEX, a set of generator functions describe the
problem in an ASCII file written in Python. After the
generator reads the file, it writes the ICF3D input files
in the UCD format.

The generator has been extended to specify meshes
that are not logically hexagonal. We allow for voids
within the domain, e.g., to represent solid bodies. The
generator also allows the user to describe the grid in
one coordinate system and write the input file in
another. Thus, we may discretize the sphere in (r, θ, φ)
and compute in Cartesian coordinates. This presents a
special challenge, because the individual elements are
not symmetric in the expected directions. The genera-
tor also decomposes the domain for MPPs. The user
chooses along which of the k, l, and/or m directions to
parallelize. For example, one could divide a kmax, lmax,
mmax = (31, 51, 81) domain amongst 2 × 2 × 4 = 16 PEs,
where each PE owns 15 × 25 × 20 cells.

Python can interact with and “steer” the execution.
Steering permits the user to directly interact with the
various code modules, thereby allowing re a l - t i m e
analysis of the computed results. Unfortunately, this
mode of operation requires that the controller/inter-
preter be portable to the machine of choice. This
requirement may not be simple to fulfill, particularly
on MPPs. Consequently, we provide two modes of
operation. In one, which is still under development,
the computing core (ICF3D) and the controller
(Python) are tightly coupled. We use this mode on
uniprocessors. The second mode gives us the flexibility
of running ICF3D on a variety of platforms with no con-
cern of the steering engine’s portability. This mode
evokes the distributed computing model; the stand-alone
ICF3D is controlled by a Python session executing at a
local workstation.

ICF3D is run in this second, distributed mode, on a
variety of computers, uniprocessors and MPPs. This
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TABLE 1. Results for Laplace’s equation on the unit cube with
Dirichlet boundary conditions L = 1/(n+1) and n = 15. Time is in
arbitrary units.

Preconditioner Iterations Time

One-step Jacobi 30 —

Two-step Jacobi 18 56.15

Incomplete Cholesky 13 56.13

TABLE 2. Same problem as for Table 1, with Xmax = 1, and Ymax =
Zmax = 0.1.

n Preconditioner Iterations

11 None 40
11 One-step Jacobi 37
11 Two-step Jacobi 40
11 Incomplete Cholesky 10
21 None 58
21 One-step Jacobi 56
21 Two-step Jacobi 441

identical. The nearly twofold decrease in the iteration
count between one- and two-step Jacobi agrees with
the results of Ref. 15. However, this problem is charac-
terized by uniform and equal ∆x, ∆y, and ∆z, which
implies that we obtain an M matrix. Hence, the first-
order Jacobi iterative method converges,16 and one can
apply the results of Ref. 15 to make the two-step Jacobi
method an efficient preconditioner.

H o w e v e r, for nonuniform meshes, Eq. (23) implies
a loss of the M-matrix pro p e r t y. Furthermore, it is
easily shown that the matrix need not be strictly
diagonally dominant. Hence, the Jacobi method
need not converge and the two-step pre c o n d i t i o n e r
may even delay convergence. To illustrate, we con-
sider the same problem as above except we set Xm a x
= 1 and Ym a x = Zm a x = 0.1. We again use n + 1 uni-
formly spaced points in each direction. The re s u l t s
appear in Table 2.

For n = 11, two-step Jacobi is slightly worse than
one-step and no better than the conjugate gradient
method without a preconditioner, while IC took four
times fewer iterations. However, for n = 21, two-step
Jacobi actually did considerably more harm than good.

L a s t l y, in the above problem, we confirmed that
the numerical solution equals the exact solution, 
(1 – x)(1 – y)(1 – z). On a hexagonal mesh, the exact
solution belongs to the domain spanned by the test
functions.



allows us to use the parallel machines exclusively for
computations and relegates the generation and post-
processing chores to the desktop. The user directs
where to execute ICF3D, and the generator takes care
of the details: reading the user‘s deck, preparing the
input files, shipping them to the computer of choice,
initializing the run, etc. While this is not as flexible as a
truly steerable code where parser and code are inti-
mately connected in a single executable, it has given us
an invaluable means to develop and debug ICF3D and
has provided an easy interface to the MPP of choice.
The system supports continuation runs via restart files
as well as a link to the debugger on the remote
machine. Our only requirements on the remote
machine are a correct C++ environment with standard
remote-shell execution capabilities. Since the interface
is the same regardless of the computing engine—MPP
or uniprocessor—the parallelization is completely
transparent to the user. The decomposition of the
domain and subsequent recombination of the results
from the individual PEs are done by the generator. In a
typical run, after ICF3D finishes, the data is automati-
cally transmitted to the workstation to be saved for
later postprocessing or examined immediately. For
subsequent processing with the AVS visualization
s o f t w a re, ICF3D also writes files in the AVS UCD
data format.

Parallel Processing

We target distributed memory processors (DMPs)
and rely on explicit calls to message passing functions.
This is the optimal strategy for computers such as the
CRAY T3D and the IBM SP2, as well as networks of
workstations (if the network is provided with the
a p p ropriate message-passing library). The strategy also
works on shared memory computers (SMPs). ICF3D
has successfully run on uniprocessor workstations and
DMPs such as the T3D, as well as on SMPs like the 12-
node SGI Power Challenge.

We divide the physical domain into nearly disjoint
subdomains, one per PE, and “leave” the subdomains
distributed on the PEs. Each PE receives a description of
only its subdomain plus a layer of adjacent ghost cells.
In Fig. 1, we display the entire subdomain (including
ghost cells) sent to one PE. The subdomain consists of 96
owned cells and 236 ghosts. (This example has a bad
surface-to-volume ratio.) There are 108 hexahedra, 96
prisms, 96 pyramids, and 32 tetrahedra. Only 48 hexa-
hedra, 16 prisms, 24 pyramids, and 8 tetrahedra are
owned cells. The peculiar cones and innermost sphere
primarily consist of ghost cells. They appear since the
domain decomposition re q u i res that each owned cell
know about all cells that share one of its vertices.

The subdomains are described in the input files,
which are written in the modified AVS UCD format.

The modification consists of assigning global as well as
local sequence numbers to both cells and nodes, and
tagging the cells with the number of the PE that owns
it. The input files are written by the generator; and
only it has access to the entire domain. The generator
initializes the problem, decomposes the domain, and
determines which PE owns which cell. The assignment
of nodes to specific PEs is done by ICF3D itself. Thus,
since cells do not migrate across the PEs, the task of
load balancing the PEs is assigned to the generator.

We use a “coarse grained” parallelization strategy;
the code is not replete with parallelization commands.
Crucial code segments have been identified as requir-
ing information that resides on another PE. At such
segments we insert statements of the type

if (Number PEs >1) call fooMPP();

Such branching statements appear at a high level in
the code.

For parallelization purposes, the physics modules
may be roughly divided into three kinds: embarrassingly
parallel, clearly parallelizable, and hard to parallelize
efficiently. The first type consists of modules such as
the EOS; nothing special is done since each PE works
only on the cells it owns. Explicit time-differencing
methods such as the hydrodynamic step are clearly
parallelizable. Such methods have an easily identifi-
able, compact domain of dependence. For example, a
cell‘s hydro variables at one time step depend on only
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FIGURE 1. Entire subdomain given to a PE when decomposing a
sphere and running in Cartesian coordinates. Figure includes both
owned and ghost cells.     (50-06-1296-2785pb01)



old values of that cell and its neighbors. If the neighbor
cells are owned by the same PE, no extra work is
required. If some of the surrounding cells belong to
another PE, a copy of that cell is a ghost cell of this PE.
It is the responsibility of the message-passing routines
to get the required information. The third, hard-to-par-
allelize-efficiently are those modules that require
global communication, e.g., the initialization and solu-
tion of linear systems. That subject is discussed in
“Parallel Solution of Linear Systems” (see p. 175).

When running in parallel, we use one of two
libraries in one of two modes. In one mode, for porta-
bility, we call routines from the industry standard MPI
message-passing library. On the Cray T3D, we also
provide the option of using the native SHMEM library,
since efficient implementation of MPI is site-depen-
dent. In the early stages of our parallelization work,
the LLNL MPI library was extremely slow. Now, the
SHMEM and MPI performances are nearly equivalent.
Nevertheless, having a choice of libraries has proved
invaluable; when one breaks, we switch to the other. In
the other mode, we have an additional object-oriented
layer, C4,18 which is itself written in C++ and thus
allows better use of that language. For example, MPI
routines require that we explicitly state the data type of
the arguments. In C++, such type-description is unnec-
essary since, unlike in FORTRAN, the argument carries
information about its type. C4 has also been general-
ized so that it either calls SHMEM or MPI.

The interface to the MPI, SHMEM, or C4 functions
is through special message-passing objects (MPOs),
which are constructed at the start of the run. These
objects store the information required to effect the mes-
sage passing. For example, assume that at each time
step, PE0 sends to PE9 nodal data corresponding to
nodes with global sequence numbers 500 and
1,000,001. These nodes will have different local
sequence numbers, e.g., 10, 11 on PE0, and 50, 70 on
PE9. The MPO stores the number of the other PE, the
length of the message, and the local sequence numbers
on this PE. Thus, on PE9 the MPO knows it is to
receive two numbers from PE0 which are to be stored
in locations 50, 70.

Whenever we enter a module that requires commu-
nication, such as the hydro package, we allocate
buffers of the proper size to store the messages. The
buffers are deallocated when that module is exited. In
the future, to avoid repeated calls to memory alloca-
tion routines, we will allocate a permanent block of
memory during the initialization step and have the
MPO reuse this block.

Parallel Hydrodynamics

The hydrodynamic module is fully parallelized. We
use three kinds of MPOs. (Only two are needed for
Eulerian calculations.) One communicates facial infor-

mation, the other nodal. The former is used to com-
pute fluxes (on cell faces) on inter-PE boundaries. The
latter is used in the limiting process, which deletes
unphysical extrema in the solution. For Lagrangian
runs, additional MPOs pass the required information
to compute the velocity of nodes lying on inter-PE
boundaries. We have verified that, to round-off preci-
sion, the results are independent of the partitioning of
the domain amongst the PEs.

The hydro scheme, being explicit, lends itself nicely
to parallelization, with results scaling with the number
of PEs used. In Table 3, we display timings from a test
problem. The problem is run in Cartesian coordinates,
but the mesh is generated with cylindrical coordinates.
In the results, we fix the number of cells and increase
the number of PEs. Let NPE denote the total number of
PEs, PEconfig the PE configuration in the (R, θ, Z) direc-
tions, cellconfig the number of owned cells in (R, θ, Z),
cellratio the ratio of owned to ghost cells, Time the exe-
cution time, Speedup the ratio of Time to Time for the
32-PE run, and E = Speedup/(NPE/32) the efficiency.
The efficiency results reflect the fact that as NPE
increases, cellratio degrades, which creates a greater
message passing overhead.
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TABLE 3. Timing results (in s) obtained from a test problem run in
Cartesian coordinates and with mesh generated with cylindrical
coordinates.

NPE PEconfig Cellconfig Cellratio Time Speedup E

32 (8, 1, 4) (8, 16, 8) 1.32 959.7 — —

64 (8, 1, 8) (8, 16, 4) 0.90 501.0 1.92 0.96

128 (16, 1, 8) (4, 16, 4) 0.74 264.6 3.63 0.91

256 (16, 1, 16) (4, 16, 2) 0.42 149.9 6.40 0.80

Parallel Solution of Linear Systems
At the time of writing this article, we are still

developing parallel solutions to linear systems. What
follows here is a general discussion of the topic; tim-
ings and scalings will be presented at a later date.

The linear systems generated by ICF3D are larg e ,
sparse, symmetric, and positive definite, and there f o re
ideally suited for PCG. For uniprocessors, we offer thre e
kinds of preconditioners: IC, one-step, and multistep
Jacobi. Their parallel implementation is described below.

The CG iterations consist of vector sums, inner pro d-
ucts, matrix vector multiplications, and the solution of
the preconditioning system. These operations are easy
to implement if the nodes are assigned to the PEs. This
is done in parallel at the start of the run. Nodes on or
inside inter-PE boundaries are assigned without any



need for message passing. Ownership of nodes on the
“outside” of the ghost cells re q u i res point-to-point com-
munication. After this initialization, every node on
every PE has been tagged with the PE that “owns it.”

Once the nodes have been assigned, the vector sums
a re trivial to implement. Each PE only updates the nodes
it owns. For the inner products, each PE computes a pre-
liminary accumulation of its owned nodes and then calls
a global “reduction” routine provided by the message-
passing library. These calls are potential bottlenecks since
they re q u i re an all-to-all PE communication.

The matrix is distributed amongst the PEs as fol-
lows. We use a row-wise assignment of the matrix
coefficients. Each PE eventually gets all the matrix
coefficients for the rows corresponding to nodes that it
owns. The coefficients come from integrations over
cells, e.g., Eq. (22). If xi is owned by the PE but lies on
an inter-PE boundary, the contribution from a particu-
lar cell is done by the PE that owns the cell. With the
FE scheme, each PE computes the matrix coefficients
just as in the uniprocessor case, i.e., it integrates only
over owned cells. Then, special MPOs determine
which contributions need to be exchanged with other
PEs. As for the hydro MPOs, the matrix MPOs are con-
structed during the initialization phase.

Once the matrix is distributed, the matrix vector
multiplications are relatively straightforward. If

(25)

is one of the owned elements of the PE, the product is
easily done if the PE has the latest xj values. For some
yi, the requisite xj are owned by other PEs. Those val-
ues are delivered to the PE by other MPOs.

L a s t l y, we discuss the preconditioners. For one-step
Jacobi, message passing is not re q u i red. Multistep
Jacobi, which is one example of a polynomial pre c o n d i-
t i o n e r,1 3 re q u i res a matrix vector multiplication. Each
step is preceded by a send/receive. For IC, our plan is
to perform the usual ICCG(0) algorithm but ignore cou-
pling across the PEs. In this way, we avoid the 
fundamental bottleneck of ICCG, namely, how to paral-
lelize the solutions of the triangular systems. If the
domain decomposition has a low surface-to-volume
ratio, this approach is efficient. Eff e c t i v e l y, the decom-
position is even more incomplete than on a unipro c e s-
s o r. At the very least, this parallelizes, does not re q u i re
any message passing, and should outperform one-step
Jacobi because the latter is the limiting case of a decom-
position so incomplete that it ignores all coupling.

Numerical Results

In this section we present results of test problems in
order to display some of ICF3D’s capabilities and
check the algorithms. The section is divided into thre e

    

yi = Ai , jx j
j

∑

parts. “Hydrodynamic Problems” (see below) discusses
two hydrodynamic problems—the Rayleigh–Taylor and
Richtmyer–Meshkov instabilities—which use only the
h y d ro physics module and ideal gases, i.e.,

w h e re γ and cv a re user-specified constants. In 
“Non-linear Diffusion Problem” (see p. 177), we turn
our attention to the heat conduction module and simu-
late nonlinear diffusion. The calculation is done in 3-D
Cartesian coordinates, but by construction, the pro b l e m
should be spherically symmetric. Finally, in “Coupled
Physics Problem” (see p. 178), we discuss a contrived
test problem that exercises all of the available physics
modules, a realistic material, hydro, heat conduction,
and radiation, and compare our results to LASNEX.

Hydrodynamic Problems

We consider a class of instabilities where two fluids
of different densities are subjected to an acceleration g.
Theoretical work on the growth of a perturbed inter-
face in which a light fluid supports a heavy fluid was
originally presented by Taylor19 who studied perturba-
tions of the type

(26)

w h e re z0 = const., k a << 1, and the wave number k =
2 π/λ. Taylor showed that the amplitude a satisfies

(27)

where A = (ρ2 – ρ1) /(ρ2 +ρ1) is the Atwood number,
defined in terms of the densities on either side of z0,
and where g = –g .

We simulate two cases: (1) the Rayleigh–Taylor insta-
bility in which g = const. and (2) the Richtmyer–Meshkov
instability in the acceleration is impulsive, e.g., caused by
a shock.

Rayleigh–Taylor Instability
We consider the nearly incompressible case suggested

by Ta b a k ;2 0 we set γ = 10 in both gases. The computa-
tional domain consists of a box with axial extent, 0 ≤ z ≤
2λ. The initial equilibrium density distribution is

(28)

where l = 1.1λ. We run this problem in the Lagrangian
mode. At t = 0, we initialize the grid with a sinusoidal

    

ρ =
10 z l( )1 9

0 ≤ z ≤ λ

100 z l( )1 9 λ ≤ z ≤ 2λ

 
 
 

  

    ̂ z 

    

d2a

dt2 = kg t( )a t( )A ,

    δz = a cos kx ,

    γ − 1( )cvT = γ − 1( )ε = p/ρ ,
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Richtmyer–Meshkov Instability
In this problem, analyzed by Richtmyer,21 a per-

turbed interface interacts with an incident planar
shock. Before the shock’s arrival, the interface is in
equilibrium since the two gases have equal pressures.
From 1-D theory (no perturbation), a shock-on-contact
interaction results in a displacement of the interface
and two waves, one transmitted, another reflected. The
transmitted wave is always a shock. The type of
reflected wave depends on the unshocked density of
the gas on the side from which the shock is traveling. If
this side is of higher (lower) density than the other gas,
the transmitted wave is a rarefaction (shock). If the
“shock-incident” side is of higher density, the ampli-
tude of the perturbation changes sign. In either case,
after the interaction, the amplitude is abruptly dimin-
ished, but later grows linearly in time.

For the simulation, we run in the Eulerian mode to
avoid tangling the mesh and to follow the growth into
the nonlinear regime. In the results, z is the horizontal
direction and x the vertical. We use the specifications
relayed by Dimonte.22 The domain consists of (0, 0) ≤
(z, x) ≤ (0.04, 0.005). We simulate only half a wave-
length along x and apply symmetry conditions at
transverse boundaries. For z, we apply symmetry at
z = 0, and inflow at z = 0.04. The initial perturbation is
given by Eq. (26) with a = 10–3, k = 200 π, and z0 = 0.03.
The initial conditions are characterized by three
regions: the left z < z0, the right unshocked z0 ≤ z < zs,
and the right shocked zs ≤ z, where zs = 0.32 is the posi-
tion of the incident, planar shock. The conditions are
described in cgs units in Table 4.
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perturbation at z = λ with amplitude a = 2.25 × 10–4 ∆z
where ∆z = 2λ/Nz is the unperturbed grid spacing. The
perturbation is feathered into the z direction three
zones deep on either side of the interface. We consider
three problems. In each one, we initialize one-half
wavelength in the transverse direction. In all cases we
use 40 cells in the z direction. The problems are 
• A 2-D case with 20 cells in the x direction. The per-

turbation is given by Eq. (26) with z0 = λ.
• A 3-D case with 20 cells in both x and y directions.

The perturbation is given by

and kx = ky.

• A 3-D case with 20 cells in both x and y directions.
The perturbation is as above except kx = 3ky.

The wavelengths are chosen so that all cases have the
same total wave number k =               .

For constant g, Eq. (27) implies that the perturbation
grows exponentially with growth rate Γ =             .
Hence, all three cases should grow at the same rate.
With k = 2π/0.001 and g = 0.33671717, we obtain Γ = 41.6.
F i g u re 2 displays log1 0(a ) vs t for t ≤ 0.25 and t ≥ 0.05,
after the system has settled into an eigenmode. After
0.25, the mode reaches an amplitude of approximately
0.1 λ and saturates. The numerical Γ is within 1% of
the theoretical value. This test problem shows the abil-
ity of ICF3D to model the linear regime thereby
demonstrating the accuracy of the method. In Fig. 3,
we display the interface at t = 0.14 for the kx = ky case.

    
δz = zo = acos kxx( )cos kyy( ) ,

kx
2 +ky

2

Agk

FIGURE 2. Rayleigh–Taylor problem showing common logarithm of
mode amplitude vs time. Labels A, B, and C correspond to 2-D, 3-D
square, and 3-D asymmetric cases, respectively.     (50-06-1296-2786pb01)

FIGURE 3. Rayleigh–Taylor problem showing perturbed interface at
t = 0.14 ns.     (50-06-1296-2787pb01)



(29)

where a and n are constants. If the initial condition is a
delta function and the domain extends to infinity, the
analytic solution is given in Ref. 24. By conservation of
energy (heat), the solution satisfies

The analytic solution is given in terms of the radial posi-
tion of the front rf and the temperature at the center Tc i n

(30)

(31)

and

(32)

The constant ξ depends only on the conductivity expo-
nent n. For our test, we use n = 3 and obtain

For the numerical test, we set a = Q = 1 and dis-
c retize 1/8 of a sphere: 0 ≤ r ≤ 1 and 0 ≤ θ, φ ≤ π/ 2 ,

    
ξ n=3 = 0 . 8 9 7 9  .

    

Tc =
nξ2

2 3n + 2( )
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TABLE 4. Conditions (cgs units) used in the Richtmyer–Meshkov
instability problem.

Region Density Velocity Pressure γ

z < z0 0.12 0 4.92048 1010 1.45

z0 ≤ z <zs 1.7 0 4.92048 1010 1.8

z < z0 3.6617120 –2.453647 105 2.4 1011 1.8

FIGURE 4. Richtmyer–Meshkov
problem showing density
(g/cm3) at various times. (a) is at
t = 0 ns; (b) at t = 7.0 ns, (c) at t =
22.2 ns, (d) at t = 36.8 ns, (e) at 
t = 53.3 ns, and (f) at t = 77.5 ns.     
(50-06-1296-2788pb01)

With these conditions, we expect a reversal of the
interface, followed by a growth of the amplitude and
an eventual nonlinear stage setting in. In Fig. 4, we
p resent a time sequence of ρ. Fig. 4(a) shows the ini-
tial condition. In Fig. 4(b), t = 7 ns, the shock has
a l ready hit the interface, producing a transmitted
shock and a reflected rarefaction. Note the re v e r s a l
of the interface. The results in Figs. 4(c) and 4(d), at 
t = 22 ns and 37 ns re s p e c t i v e l y, show the onset of
the nonlinear stage. In Fig. 4(e), t = 53 ns, the inter-
face is beginning to form spikes. By this time, the
shock has reflected off the left boundary but has not
yet interacted with the interface. By the end of the
simulation, t = 77.5 ns Fig. 4(f), the reflected shock
has passed through the interface. The interface is
now severely deformed. At this time the shock is at
z = 0.014 and has itself developed a slight deforma-
tion. These results are in qualitative agreement with
the ones published by Cloutman et al.2 3

Nonlinear Diffusion Problem

We now consider the spherically symmetric, nonlin-
ear diffusion equation



FIGURE 6. Shock tube problem results from ICF3D showing p vs z.
All physics running.     (50-06-1296-2790pb01)

w h e re θ denotes the polar angle. We impose symme-
try conditions along φ = 0 and θ = φ = π/2. Along r =
1 we also impose symmetry, but this condition is
unnecessary since we halt the calculation when rf ≈ 0.8.

We generate the grid in spherical coordinates by
c o n s t ructing a logical (k, l, m) grid, where (1, 1, 1) ≤
(k, l, m) ≤ (km a x, lm a x ,mm a x}, set (km a x, lm a x,mm a x ) =
(21, 9, 9), and use uniform grid spacing. There are
(km a x –1) ( lm a x –1) (mm a x –1) = 1280 cells. Before ru n-
ning, we convert the grid into Cartesian coord i n a t e s .
This creates cells of all admissible types since the
s p h e r i c a l to Cartesian coordinate transformation
results in degenerate nodes. There are (mm a x – 1 )
(km a x –2) prisms along the z axis. At the origin there
a re mm a x –1 tetrahedra and (mm a x –1) ( lm a x –1) pyra-
mids. The remaining cells are hexahedra.

In Fig. 5 we present the numerical solution at t =
0.2821 ns along each Cartesian coordinate axis. The
analytic solution given by Eqs. (30) through (32) is
also displayed as curve D. The numerical solutions
on the three axes are nearly indistinguishable.
Examination of the data shows that the central tem-
p e r a t u re, 0.0671, is within 1% of the analytic value,
0.0676. 

Coupled Physics Problem
The final test problem was constructed to test the

interaction of all the physics packages pre s e n t l y
available in ICF3D: a real gas EOS, hydro motion,
S p i t z e r-Härm heat conduction, and radiation diff u s i o n .
The problem models a shock tube filled with beryllium
(SESAME table no. 2020); the numbers used in the simu-
lation are not meant to model any experiment.

We run this in a 1-D mode, i.e., only one cell in
each of the x and y d i rections. The initial conditions
vary only with z. The initial density ρ is 1.0 gm/cc
e v e r y w h e re. We initialize with a higher (1 keV) tem-
p e r a t u re on the left, and on the right, we set T = 
0.1 keV. The initial velocity is set to zero. For the
radiation, we use only one group and set the opacity
to a constant 1 cm2/gm. We impose symmetry con-
ditions on the left and right boundaries and run in
the Lagrangian mode, using 203 zones in the calcula-
tion. Initially, the grid is uniform.

In Fig. 6 we display the pre s s u re at t = 0.1 ns when
ICF3D computes the joint effect of hydrodynamics, radi-
ation transport, and heat conduction. Since there are no
analytic solutions for this problem, we compare the
ICF3D calculation to one done with LASNEX. The
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FIGURE 5. Diffusion problem showing temperature profile vs
radius along coordinate axes x, y, and z (curves A, B, and C) at t =
0.2821 ns. Curve D is the analytic solution.     (50-06-1296-2789pb01)
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concern is whether or not the inherently nodal re p re-
sentation of diffusion type problems clashes with the
fundamentally cellular re p resentation of the hydro
variables. Again, experience in LASNEX as well as
the encouraging results from the “Coupled Physics
P roblem” section (see p. 178) alleviates this concern.
Hence, we should be able to reap all of the benefits
f rom FE methods.

So far, the parallelization efforts are a resounding
success. In the past year, most of the hydro develop-
ment effort has been done on the LLNL CRAY T3D
because we obtain results that much faster when run-
ning on 32 PEs. We are now finishing parallelizing the
linear solver and look forward to running coupled
problems in parallel.

We have found the C++ programming language
to be a helpful tool in organizing a physics code of
the complexity of ICF3D. Our experience has given
us new ideas on how to organize even larger codes
for ease of maintenance and how to program them
for maximum speed. We plan to implement these
ideas so that ICF3D can grow into the best possible
full-scale production code. The full-scale code will
also benefit from our re s e a rch in such areas as
numerical hydrodynamics and the use of parallel
p rocessors to solve linear equations for diff u s i o n
p ro b l e m s .
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